A Lightweight Networking Strategy for Robotic Control Systems

Jake Read
Massachusetts Institute of Technology
Cambridge, Massachusetts
jakeread@mit.edu

Nicholas Selby
Massachusetts Institute of Technology
Cambridge, Massachusetts
nselby@mit.edu

ABSTRACT

We present an open-source networking protocol for use in Net-
worked Control Systems that can be implemented on system end-
points trivially and runs with no global state, allowing for enhanced
memory conservation and fault tolerance. This strategy, which we
call TinyNet, allows for real-time multipath routing by maintaining
a table at each router that tracks which of the router’s ports is part
of the shortest path to each known destination node. TinyNet uses a
busyness-metric based cost function, taking the buffer size at each
neighbor node to avoid routing bottlenecks and ensure optimal
network utilization. TinyNet’s small packet sizes allow for efficient
transmission of data, making it ideal for simple network models
that primarily involve maintaining control loops. [insert stuff about
performance data here]

CCS CONCEPTS
» Networks — Network protocol design; Routing protocols;

ACM Reference format:

Jake Read, Douglas Kogut, Nicholas Selby, and Patrick Wahl. 2017. A Light-
weight Networking Strategy for Robotic Control Systems. In Proceedings of
ACM Conference, Washington, DC, USA, July 2017 (Conference’17), 8 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Networked control systems (NCS) are critical parts of complex ro-
botics and avionics systems where many sensors and actuators
work together to perform a common goal (e.g. locomotion, stabi-
lization, sensor fusion, position control, etc.). NCS are also often
employed in manufacturing, where multiple machines are linked to
coordinate material handling and production scheduling. The field
of NCS is unique from other networking fields in important ways.
o Total throughputis valued but is not a key metric. Rather,
message sizes are typically very small (between three and
fifty bytes) and message delay time is the critical metric.
Often, messages are only one-packet in length.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Conference’17, July 2017, Washington, DC, USA

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxX-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Douglas Kogut
Massachusetts Institute of Technology
Cambridge, Massachusetts
dkogut@mit.edu

Patrick Wahl
Massachusetts Institute of Technology
Cambridge, Massachusetts
pwahl@mit.edu

e Determinism in message delivery time is critical. Sys-
tems must guarantee that certain control loops “close” within
a defined time lest they become unstable. This means that
the distribution of round trip times (RTT’s) on the network
should have a very small standard deviation.

e Robustness is critical. NCS should not contain any sin-
gle points of failure. Additionally, NCS should not require
network controllers to coordinate port-forwarding tables;
the time it takes for a network controller to modify routing
tables on all nodes in the network is nontrivial, and leads to
large increases in the standard deviation of RTT’s.

1.1 The State of the Art

The field of NCS is only recently moving away from the use of
FieldBusses. State-of-the-art NCS employ simple Switched Ethernet
or proprietary protocols based on Switched Ethernet in order to
route traffic[4][6].

Switched Ethernet has been adopted in the NCS industry due
to the accessibility of hardware and the open standard it offers -
allowing control products from multiple vendors to be potentially
integrated by a customer and allowing systems to increase in scale
and complexity without the re-configuration or specification of a
FieldBus. However, Switched Ethernet is not ideal for the particular
demands of NCS and it is not likely that it will meet the demands
of NCS in the near- or long-term.

1.2 The Limits of Available Technology

As we will discuss in Section 2, Switched Ethernet possesses the
critical limit that a network graph may not contain more than one
route to any given endpoint. This results in message bottlenecks at
particular switches and network graphs that contain Single Points
of Failure (SPoF) wherein a singular link failure can result in many
endpoints becoming unreachable, often permanently so.

In order to increase Message Delivery Determinism, a key met-
ric for NCS performance, we also look to provide a strategy for
multipath routing. With multipath, NCS can operate with highly
connected graphs rather than spanning-trees and route messages
around busy nodes rather than queuing them in a long buffer.

However, we find that existing multipath routing techniques,
largely developed for use in datacenters, require the use of net-
work controllers (NC’s) to update port-forwarding tables. These
NC’s necessarily contain information about the state of the entire
network graph. During a link failure or rapid change in network

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

utilization (say, a single router suddenly becoming very busy), these
network controllers are responsible for re-converging on an accept-
able routing topology and forwarding new routing rules to each
node in the network. This convergence happens on the order of
one second [5], with a lower bound of approximately 200ms [2][3].
Because these re-convergences cause the rest of the network to
shut down momentarily, they are likely to cause control loops in an
NCS to fail. For this reason, existing multipath routing techniques
are not appropriate for use in NCS.

1.3 TinyNet: Stateless Multipath

TinyNet is an experiment in networking strategy that combines
the relative simplicity of Switched Ethernet with the advantages
offered by multipath routing techniques seen in datacenters. In
order to provide multipath capability without a network controller
to coordinate forwarding tables, we implement a port-forwarding
protocol based on each routers’ local knowledge of its neighbours’
packet queue as well as historical data on packets previously seen
passing through the routers’ ports. In this paper, we will outline
the protocol rules we have developed for TinyNet and evaluate the
protocol using embedded hardware as well as a simulated network
model.

2 RELATED WORK

Related work can be divided into three distinct areas: convergence
in networked systems, routing protocols, and Switched Ethernet.

2.1 Convergence in networked systems

During both startup and topology change, nodes need to establish
knowledge of the network graph to a varying degree of complete-
ness. In most routing protocols, this requires either nodes to broad-
cast their routing tables or nodes to send flood messages to crawl
the topology manually.

One of the key features of the TinyNet protocol is the ability
to react in real-time to failure scenarios, i.e. dynamically reroute
paths in the event of a link/node failure. In this section, we analyze
the relative ability of our protocol to reestablish a network quickly
when failure scenarios happen.

Convergence refers to the reestablishment of consistency in
topological information that routers have about their network. In
our protocol, convergence will refer to the delay that occurs when
a node is removed from the network and the subsequent dynamic
packet flooding and re-routing that occurs. Note that convergence
is slightly different in our protocol since each node will not have a
complete view of the network graph. However, convergence time
from other routing protocols will serve as good benchmarks as
convergence time measures the time it takes the network to operate
normally in the event of a node failure or of node busyness.

2.1.1 Comparison to other protocols.
We analyze the failure scenarios in 3 protocols, namely OSPF, SPB,
and TRILL. In all 3 of these protocols, each node must know the
entire network graph to calculate the shortest path between a source
and destination. Thus, when a node goes down, the entire network
will halt and update their view of the network graph, drastically
decreasing message delivery time determinism. These protocols
seem to imply a standard convergence time of around 200ms [2][3].

J. Read et al.

In TinyNet, when a node is withdrawn, information regarding failed
links and nodes propagates naturally and efficiently through the
network without altering network state or significantly increasing
delay time

Heavily associated with convergence time is the ability for rout-
ing protocols to consider multiple paths. Each of the 3 protocols
above offers such strategies. TRILL uses Fabric Shortest Path First
(FSPF) to find an alternate route upon topology change. OSPF and
SPB can be configured to use equal-cost multipath (ECMP) routing
to maintain multiple paths when there exists more than one path
with the same cost. These 3 protocols offer dynamic path finding
only in certain scenarios. TinyNet will naturally use a greedily
found path with significantly less overhead than stateful protocols.

TinyNet improves upon these protocols by decreasing packet
header size and performing less computationally expensive tasks,
i.e. not running Dijkstra’s algorithm on a network graph. This
improves the usability of the TinyNet protocol across a large range
of hardware.

2.2 Switched Ethernet

In Switched Ethernet, because a minimum spanning tree is created,
nodes in a particular layer compete for link-time on the layer above.
Message delay time increases linearly with the probability that
peers are transmitting at the same time and with the number of
peers on that layer.

In addition, Switched Ethernet contains single points of failure,
where a broken link or switch means that the network must re-
run the spanning tree protocol algorithm - a process that often
takes several seconds [5]. Because Switched Ethernet graphs are
hierarchical, it is often the case that failure on a single link can
cause entire sections of the network to become unreachable.

Furthermore, Switched Ethernet is non-programmable, i.e., switches
are black-box integrated circuits and do not allow systems design-
ers to arbitrarily add functions to a system on the networking layer.
For example, while it is desirable in NCS to implement message
priorities and load balancing, this is not possible with a Layer 2
routing strategy and must be added in the application layer.

3 THEORY

TinyNet’s protocol almost entirely removes inter-node administra-
tive communication. Instead of communicating topological data to
each other, nodes only send heartbeats to their immediate neigh-
bors and forward packets to designated ports. In this sense the
protocol is stateless. During normal execution and failure scenarios,
TinyNet is able to function in a distributed manner, delegating the
work of sending the message to a neighbor instead of pre-planning
the entire route. This also improves link utilization and goodput
relative to other protocols.
We design TinyNet with the following constraints:

¢ Integration in Endpoints. We develop TinyNet such that
it can be easily integrated into robotic endpoints. We use a
UART link, a peripheral available on nearly any microcon-
troller, and write the network protocol into a C library that
can be trivially attached to existing firmwares.

e Open Source. We develop TinyNet as an open-source project
such that others developing Network Control Systems can

® N o U AW =

@
&

A Lightweight Networking Strategy for Robotic Control Systems

implement it (as above) into their projects on whichever hard-
ware they choose. We hope that this, rather than attempting
to establish a closed standard, will allow the project to take
on many instantiations.

o Statelessness. We develop TinyNet with the goal of mini-
mizing the centralized awareness of state needed to maintain
routing. This increases overall robustness and eliminates the
need for a central network controller or other network con-
figurations.

e Real-time Multipath. We are motivated to deliver real-
time multipathing for port-forwarding in TinyNet.

e Robustness. TinyNet must continue to perform in the face
of link or router losses.

3.1 The TinyNet Algorithm

Each node handles incoming packets as follows:

if the packet is not a buffer update:
update the LUT using packet src. and hop count

if packet is standard:
if T am destination:
process data in packet
reply with ACK
else:
increment hop count
if LUT has destination address:
send packet to port which minimizes C(hops, buffer) over all ports
else:
send packet to all ports as standard flood

elseif packet is ACK:
if 1T am destination:
process acknowledgement
else:
increment hop count
if LUT has destination address:
send packet to port which minimizes C(hops, buffer) over all ports
else:
send packet to all ports as ack flood

elseif packet is standard flood:
remove packet dest. from LUT at that port if it exists
if 1 have not yet seen this flood:
if I am destination:
process data in packet
reply with ACK
else:
increment hop count
if LUT has destination address:
send packet to port which minimizes C(hops, buffer)as standard
packet
else:
send packet to all ports except one from which it was received

elseif packet is ACK flood
remove packet dest. from LUT at that port if it exists
if 1 am destination:
process acknowledgement
else:
increment hop count
if LUT has destination address:
send packet to port which minimizes C(hops, buffer) as standard ACK
else:
send packet to all ports except one from which it was received
else:
write buffer depth to LUT

In this algorithm, LUT is look-up table and ACK is acknowledge-
ment. At a high level, the packet handling algorithm identifies
whether the incoming packet is a standard message or an ACK,
whether or not it is a flood, and whether or not it is a heartbeat,
all by reading the first byte of the packet. Packets are structured as
follows:

Conference’17, July 2017, Washington, DC, USA

HType‘ 8b \ 10b ‘6b‘10b‘6b‘ NB H
STD | OxFF or FE | Dest. | HC | Src. MSG
ACK | 0xFD or FC | Dest. | HC | Src. - -

HB - - - - - -

STD is standard packet, ACK is an acknowledgement, and HB is a
heartbeat containing only a buffer depth between 0 and 251 so as
to avoid ambiguity with the four other packet types. 0xFE or 0xFC
designate the packet as a flood standard or flood acknowledgement,
respectively. OxFF or 0xFD designate the opposite. In the top row,
lowercase ‘b’ is “bits" and uppercase ‘B’ is “bytes.” The “ B” is the
length of the message payload in bytes. Dest., HC, Src., and MSG
are the destination ID, hop count, source ID, and message payload,
respectively.

3.2 Message Delay Determinism

One major axis along which TinyNet must perform is Message
Delay Determinism, i.e. how quickly and reliably a packet can
reach its destination. For a given packet at a given node, the total
amount of time spent on the packet can be described as:

D = Drx + Dprocess + Dtx (1

where Dyx and D;y is the amount of time for the packet to be
received and transmitted, respectively, over UART and Dprocess is
the amount of time required for processing the packet. Dprocess
generally remains constant for all packets which are not heartbeats
and can be measured directly using a logic analyzer.

The amount of time spent receiving the packet, Dy, can be
computed from:

Drx =P X Dbyte + Lt 2)
where P; is the number of bytes in the packet, Dy, is the amount
of time the processor takes to process the byte in the UART buffer,
and L;; is the link transmission time:

L¢r = Py X 10/ Ly, ®3)

where Ly, is the bitrate over the link. Note that a byte sent over
UART contains eight message bits plus one start and one stop bit
for a total of ten bits. These parameters can be measured directly
using a logic analyzer. Generally, D, is dominated by the bit rate
term.

The amount of time spent transmitting the packet, D; is com-
puted similarly:

Dix = P1 X (N % Dbyte +10/Lp,) ()

where N is the number of ports along which to send the packet. Note
that N does not multiply the bit rate term because transmission
along each port happens simultaneously.

If multiple packets are received at a node before each one can
be processed, incoming packets are stored in a queue until the
processor is ready to handle them. As the frequency of incoming
packets increases, so does the depth of the queue and thus the
latency between packet reception and transmission. For this reason,
it is important for nodes to be able to apply backpressure on the
network to signal to other nodes that alternative message paths
may be preferable.

TinyNet uses a periodic heartbeat to apply backpressure. At a
predefined period, each node will transmit a single byte containing
its current buffer depth to each neighboring node. This packet is

Conference’17, July 2017, Washington, DC, USA

not forwarded and serves only to notify neighbors so each node
can have a more robust path cost function of both hop count as
well as a "busyness metric":

C(HC, BD) = HC + ABD (5)

where HC is the estimated hop count to the destination along this
port and BD is the buffer depth of the node connected to this port.
A is a tunable parameter that can be set by the network designer.
The hop count can be estimated from previous packets received on
this port originating from the destination node. The buffer depth is
determined from the heartbeat.

3.3 Robustness to Failure

Traditionally, stateful and stateless network protocols handle node
failure very differently. The more the network protocol requires
nodes to be aware of current network topology, the longer it takes
to propagate information about node failure. Consider a worst-case
scenario of a network running OSPF which requires all nodes to
have full, real-time knowledge of network topology in order to
perform routing. After node failure was discovered by its neigh-
bors, a packet containing information about that disconnection
would have to be propagated and processed by every other node
in the network. Thus, it is desirable to reduce or remove network
statefulness to improve recovery time from node failure.

However, stateless network protocols exhibit a different prob-
lem. These techniques typically initialize a spanning tree over the
network, effectively cutting hardware links that create loops. Un-
fortunately, if a node that is part of the spanning tree fails, the
branches below that node become unreachable until the network
senses the node failure and regenerates the entire spanning tree.

TinyNet aims to take advantage of the multipath routing of state-
ful networks without incurring large recovery time. To accomplish
this, TinyNet again leverages the heartbeat, this time to create a
distributed understanding of network state rather than an absolute
centralized one. At a period arbitrarily larger that that of expected
heartbeat reception, each node pauses to ensure it has recently
received a heartbeat along each port. If it has, it can assume that
the node connected along that port is working. If is has not, it can
assume that node has failed and update its look-up table accord-
ingly. By “taking the pulse” of its neighbors, each node can evaluate
local network state.

However, the heartbeat only notifies nodes directly connected to
the failed node; TinyNet still needs to notify all nodes that would use
this path to communicate. To accomplish this, each non-heartbeat
packet contains a single bit identifying whether or not the packet
was flooded from the transmitting node. Because nodes will only
flood messages for which their look-up table does not contain a
path, a node that receives a flooded message on a given port can
assume that said port is not a path to the destination.

In the event of node failure, neighboring nodes will notice a
sudden absence of heartbeats and remove all corresponding entries
from its look-up table. Assuming that port was the only path to the
destination for that node, if that node receives another packet with
the same destination, it responds by flooding the packet back with
the flood designation. This effectively notifies the previous node
that the path is no longer available. This process repeats itself until
a node is reached that knows a different path to the destination, at

J. Read et al.

Figure 1: The router schematic.

which point the packet ceases to be a flood and propagates along
the new path as a standard packet. Thus, only the nodes that benefit
from knowledge of node failure are notified, and they are notified
when they need to transmit.

4 IMPLEMENTATION

4.1 Hardware

We designed and fabricated small hardware routers for TinyNet. We
use an ATSAMS70 microcontroller from Atmel/Microchip, running
with a core clock of 300MHz. The chip is capable of transmitting
UART at up to 18.75MPBS, but we found in practice we had to
lower the bitrate to 3.125 MBPS before seeing reliable transmission.
We use an ISL3177 differential driver on the UART lines to bring
some EMI resilience to the system. Although this was likely not
necessary in our testbed, our future work includes bringing the
system into harsh EMI environments (i.e. nearby Brushless Motor
Controllers).

4.2 Simulation

We simulate TinyNet in JavaScript on a Windows 10 Laptop PC. The
code is modified from the Simbit P2P network simulator [1]. Simbit
is written specifically for blockchain technologies like Bitcoin. We
modified it so that the network topology is defined as an array of
arrays representing the connections each node has on its various
ports. This topology can be created algorithmically to enable scaling
of the network to tens of thousands of nodes.

The simulation models the software running on each processor
in the network as a “manager” which handles incoming requests
on each of its ports. Each manager keeps track of its own look-up
and buffer depth tables, and will process incoming requests using
the forwarding algorithm. The managers send their actions to an
asynchronously-running network controller, which facilitates com-
munication between them. Manual simulation actions can also be
fed to the managers in order to test different types of communica-
tion on the network.

5 EVALUATION
5.1 Evaluation Methods

In order to evaluate the success of TinyNet, we use our hardware
testbed in order to time key message passing times and delays and

A Lightweight Networking Strategy for Robotic Control Systems

Figure 2: The router board file.

use those characterizations to inform a simulation. The simulation
allows us to quickly iterate through network traffic scenarios, and
measure in detail how messages are routed through the network.

5.2 Hardware

In order to evaluate our hardware systems, we used a Saleae Logic
8 Logic Analyzer to read logic level voltages from the microcon-
trollers. In the application and networking layers of the router
firmware, pins are turned high or low to indicate the occurrence of
the events we are interested in timing.

5.2.1 Processing Delay.

We denote Processing Delay Dprocess as the time it takes for one
router to, upon receiving a packet, calculate which port to forward
it along. In order to characterize this delay, we measure signals on
the link layer using a logic analyzer as a packet traverses a single
router. We take the time between the end of an incoming packet
and the beginning of the transmission of the outgoing packet as
the Dprocess-

Figure 3: Measuring Packet Delay Time.

Conference’17, July 2017, Washington, DC, USA

We averaged measurements from 10 packet traversals, and found
an average of 37ps.

5.2.2 Link Transmission Time.

We denote Link Transmission Time L;; as the time it takes for
a message to traverse a link. This is a simple calculation where
Lt = Py % 10/Ly,, where P is the length of the packet in bytes,
and Ly, is the Link Bitrate. We use a Logic Analyzer to confirm
that this is the case. Additionally, transmission and reception of
bytes also occupies the processor for some time. While the UART
link handles bit-shifting asychronously on each port, every time
a character is received the port fires an interrupt that must be
addressed by the processor. We measured this interrupt handling
time to be Dy ;e = 1.5us per Byte. Indicators for the handling of
these interrupts can be seen in Fig. 3 on Channel 3. Methods for
accounting for these delays such that results from our Simulation
match those of our Hardware is discussed in the Implementation
Section.

5.2.3 12 Router Behavior.
In order to characterize the performance of multi-link routing, we
construct a highly connected grid of 12 TinyNet Routers. In Fig.
4 we see this grid, along with the Logic Analyzer used to time
RTT, Dpgacker and verify Ly;. Also pictured is a TinyNet Bridge
that allows the network to be accessed via a USB Port.

Figure 4: A Testbed of 12 TinyNet Routers.

We then measured RTT between Router 1 and Router 12. We see
that one RTT is 511ps.

5.3 Simulation Validation

We are able to simulate varying network topologies and traffic sce-
narios using our visual-equipped simulator, which runs in JavaScript
and is based on the open-source Simbit architecture[1]. To evaluate
the simulation, we simulate a 12-node grid structure identical to
the hardware implementation and use the hardware parameters
measured by the logic analyzer to initialize the nodes. After veri-
fying the simulation accurately models the real world hardware,
we can use the simulation to run large-scale experiments. These

Conference’17, July 2017, Washington, DC, USA

Figure 5: A 511us RTT with 12 routers.

B s vz, o=dps
[10 kHz, o=85ps
13 kHz, o=140ps

| Lo,

0 100 200 300 400 500 600 YOO 800 900
RTT/hop [ps]

Figure 6: Histograms of Message Delay Times in a Grid with
Varying Levels of Cross-Traffic.

experiments include evaluating TinyNet in the control system for
a wing in avionics and other network structures.

5.3.1 12 Router Behaviour.

To verify the simulation’s ability to model reality before using it to
estimate performance, we construct a generic, highly-connected
grid of 12 nodes. As in the hardware implementation, we transmit
messages across the grid diagonal and measure the round trip time.
Recalling the RTT measured across the hardware of 511 ps, the
simulation reported a RTT of 505 ps corresponding to an error
of 1.2 percent. Thus, we conclude that the simulation accurately
models the real world system and can be used to perform larger
experiments.

5.4 Determinism of Communication Time

The first axis along which TinyNet must perform is communication
time determinism, the standard deviation of per hop round trip
time to send a message.

To evaluate this key metric, we begin by simulating a 4-by-4
grid! of nodes. Each node is assumed to have a packet delay time
of 30 us and each link a bit rate of 20 MHz. We transmit important
messages across one diagonal at a frequency of 5 kHz for 30 ms.
Across the other diagonal, we simulate various levels of cross-traffic.
1Unlike past systems that construct spanning tree abstractions from their physical

network topologies, TinyNet’s performance is enhanced by larger network topologies.
Thus, we evaluate determinism and robustness using a small grid size.

J. Read et al.

T T T T T T T T T
_ I Crili-Down: #=15us
I Controller: =455
[Imotor-Encoder: #=7ps

L]

20 40 60 80 100 120 140 160 180 200 220
RTT/hop [us]

Figure 7: Histograms of Message Delay Times in an Airplane
Wing Model Network.

The first simulation is run with cross-traffic messages being sent at
5 kHz, the second at 10 kHz, and the third at 13 kHz. We illustrate
the histograms of the per packet round trip times for messages in
Fig. 6. The standard deviations for each cross-traffic scenario are 4
s, 85 us, and 140 us, respectively.

In addition to testing determinism in a grid network, we also
evaluate in a simulated airplane wing model network. This network
consists of four layers. The top layer is a single master node. The
master node is connected to each of three controllers making up
the second layer. Each controller is connected to each of eight
motors making up the third layer. Each motor is connected to
two neighboring motors and, in the fourth layer, a corresponding
encoder. With the same hardware parameters used in the grid,
communication requirements are as follows: the motors maintain a
2.5 kHz control loop with their encoders and the controllers a 1 kHz
loop with every motor. Furthermore, the master node must drill
down and query each encoder at 500 Hz. The simulation was run
for 30 ms. The histograms of per hop round trip time are illustrated
in Fig. 7. The master-encoder query has a standard deviation of 15
s, the controller-motor loops 45 s, and the motor-encoder loops
7 ps.

These results highlight two key outcomes:

e Increased traffic across a network reduces network determin-
ism. As more packets travel across the network, the buffer
depth of individual nodes in the network grows, increasing
both message latency and the variance of that latency.

e TinyNet is able to maintain high message determinism even
in networks with heavy cross-traffic. This is to be expected
since TinyNet dynamically adapts message paths to increased
traffic through different parts of the network. This behav-
ior balances the load across many nodes, reducing message
delivery time and improving TinyNet’s ability to maintain
consistently low latency.

A Lightweight Networking Strategy for Robotic Control Systems

200 \ |
| J 1 Mode Failure, T =1.3ms
180 - | r 1
2 Node Failures, T[:I.Qms
160 ,I 3 Node Failures, T[=3.9m5 1
| 4 Node Failures, fatal
140 |
G207 IH'J
£ 100 / A ;-h 1
| f l’l J
'Q:: 80 ! \.' ,-' A UL
[YTAT l A
0 /
0 b J’?‘,m,f \ M. ﬁp‘i ! '!
LAY W '.
40 r
201 Node Failure
o
o 10 20 30 40 50 60

Time (ms)

Figure 8: Message Delay Time of Grid Network Before and
After Random Node Failure

5.5 Robustness to Node Failure

The second axis along which TinyNet must perform is robustness to
node failure, how quickly the network can react and recover from
node failure. To evaluate this key metric, we begin by simulating
a 4-by-4 grid of nodes with the same hardware parameters used
to evaluate message determinism. Corner nodes send messages to
their partners across the diagonals with a frequency of 10 kHz and
5 kHz, respectively. After 11 ms, one, two, three, or four nodes are
randomly disconnected from the network and the message delay
times are recorded. The results are illustrated in Fig. 8. After a single
node failure, the network corrected after 1.3 ms. After two, 1.9 ms.
After three, 3.9 ms. This result highlights key findings:

o TinyNet recovers almost instantly from node failures, even
when 18 percent of the network simultaneously fails. Com-
pared to stateful techniques which can take several seconds
[5] to react to lost nodes, TinyNet’s millisecond-scale delay
translates to dramatically fewer lost packets and virtually
no effect on message round trip time.

e While the loss of a single node had no discernible impact on
long-term communication time, the loss of multiple nodes
negatively impacted both message latency and determinism.
This is to be expected because TinyNet’s load balancing can
only be effective if there are more nodes along which to
transmit messages.

e TinyNet is capable of maintaining message transmissions
across a network even when 18 percent of the network has
failed. In contrast to previous spanning tree protocols for
which a single node failure can mean the loss of an entire
branch of nodes, TinyNet dynamically notices and routes
around lost nodes without changing state. However, there
is a threshold of node failures after which network latency
becomes unstable. For this set of parameters, the network
failed after it lost 25 percent of its nodes.

Conference’17, July 2017, Washington, DC, USA

6 CONCLUSION

This paper presents a novel routing protocol, TinyNet, developed
specifically for Networked Control Systems, where Message Deliv-
ery Time Determinism, rather than Total Throughput, is to be max-
imized. We have demonstrated TinyNet’s effectiveness in routing
messages with very simple hardware and developed a simulation as
a tool for evaluating the protocol’s effectiveness. We have seen that
TinyNet is able to route messages across highly connected graphs
without the use of any Network Controller and without any node
having local knowledge of the entire network graph.

Our greatest contribution is the development of a port-forwarding
strategy that incorporates real-time information about the next
hops’ current queue size in order to intelligently re-route packets
around busy areas in a network graph.

6.1 Future Work and Concluding Thoughts

We are interested in continued work on TinyNet as we believe there
is a real problem solution fit at hand.

6.1.1 Contacting Industry Experts.

It has been difficult to ascertain what realistic Network Control
Systems utilization profiles are, as there is very sparse literature on
the subject. Our approach to systems development has then been
limited to developing generic situations (like our interconnected
grid). We have reached out to professionals at Boeing, Airbus, Kit-
tyhawk and Moog Inc in order to begin collecting primary research
data on real world uses and challenges faced in the implementation
of Networked Control Systems.

6.1.2 FPGAs for a Stateless Link Layer.

We began work on an FPGA-based link layer that uses a technique
we call co-clocking’ to establish bitrate. With co-clocking, neither
side of the transmission specifies a bitrate, rather, when each side
has shifted data into a register, it ‘replies’ with a acknowledgement
bit, triggering the next bit to be transmitted. We have seen this link
demonstrate bitrates up to 65 Mbps, and have shown the FPGA
communicating with a microcontroller similar to the ATSAMS70
used in the TinyNet router at similar speeds using a wide parallel
bus running at 5 MHz. We show this system, in its infancy, in Fig.
9. We see that the use of UART is a weak link in the project for the
reasons that (1) it limits permissible bitrate to a mere 3.125 Mbps
and (2) it is "stateful’ in the sense that all ports must be configured
to operate at the same sampling period, or baudrate. We would like
to demonstrate a TinyNet implementation using this stateless link
layer in order to demonstrate a truly stateless, configuration-free
system.

6.1.3 FPGA’s for Switching.

We are also interested in working towards FPGA based port-forwarding.

We believe the TinyNet protocol is simple enough to be rendered in
Verilog with only minimal expertise. We hope that this might drive
our system performance objectively past Switched Ethernet, while
maintaining the stateless, fault-tolerant, and adaptive multipath
strategy that we have developed in this instantiation of the project.

6.1.4 Machine Learning for a Lambda Function.
Currently, our routing protocol implements a Lambda Function
to route around busy ports as shown in Eq. 5. We would like to

Conference’17, July 2017, Washington, DC, USA

Figure 9: Our FPGA CoClocking Link Layer: four Serial lines
are used to transmit data at 65MBPS between two FPGAs,
which use an 8-bit wide parallel port to shift entire bytes
into a microcontroller on each clock cycle.

explore using various machine learning techniques to approximate
the function of RTT given network topology and cost function and
use the model to optimize the cost function to improve network
performance.

REFERENCES

[1] ebfull. 2016. Simbit. https://github.com/ebfull/simbit. (2016).

[2] V Eramo, M Listanti, and A Cianfrani. 2008. Multi-path OSPF performance of a
software router in a link failure scenario. Telecommunication Networking Workshop
on QoS in Multiservice IP Networks, 2008. IT-NEWS 2008. 4th International (2008).
https://doi.org/10.1109/ITNEWS.2008.4488153

[3] J Farkas and Z Arato. 2009. Performance Analysis of Shortest Path Bridging
Control Protocols. Global Telecommunications Conference, 2009. GLOBECOM 2009.
IEEE (2009). https://doi.org/10.1109/GLOCOM.2009.5425776

[4] Rachana Ashok Gupta and Mo-Yuen Chow. 2010. Networked Control System:
Overview and Research Trends. IEEE Transactions on Industrial Electronics 57, 7
(July 2010), 2527-2535. http://foresight.ifmo.ru/ict/shared/files/201309/1_7.pdf

[5] Y Krishnan and G Shobhai. 2013. Performance analysis of OSPF and EIGRP routing
protocols for greener internetworking. 2013 International Conference on Green
High Performance Computing (ICGHPC) (2013). https://doi.org/10.1109/ICGHPC.
2013.6533929

[6] James R. Moyne and Dawn M. Tilbury. 2007. The Emergence of Industrial Control
Networks for Manufacturing Control, Diagnostics, and Safety Data. Proc. IEEE
95, 1 (Jan. 2007), 29-47. http://www.dei.unipd.it/~schenato/didattica/PSC07/NCS_
Tilbury.pdf

J. Read et al.

https://github.com/ebfull/simbit
https://doi.org/10.1109/ITNEWS.2008.4488153
https://doi.org/10.1109/GLOCOM.2009.5425776
http://foresight.ifmo.ru/ict/shared/files/201309/1_7.pdf
https://doi.org/10.1109/ICGHPC.2013.6533929
https://doi.org/10.1109/ICGHPC.2013.6533929
http://www.dei.unipd.it/~schenato/didattica/PSC07/NCS_Tilbury.pdf
http://www.dei.unipd.it/~schenato/didattica/PSC07/NCS_Tilbury.pdf

	Abstract
	1 Introduction
	1.1 The State of the Art
	1.2 The Limits of Available Technology
	1.3 TinyNet: Stateless Multipath

	2 Related Work
	2.1 Convergence in networked systems
	2.2 Switched Ethernet

	3 Theory
	3.1 The TinyNet Algorithm
	3.2 Message Delay Determinism
	3.3 Robustness to Failure

	4 Implementation
	4.1 Hardware
	4.2 Simulation

	5 Evaluation
	5.1 Evaluation Methods
	5.2 Hardware
	5.3 Simulation Validation
	5.4 Determinism of Communication Time
	5.5 Robustness to Node Failure

	6 Conclusion
	6.1 Future Work and Concluding Thoughts

	References

